library(tekkamaki)
library(ggplot2)
grDevices::palette("Okabe-Ito")
options(
ggplot2.continuous.colour = "viridis",
ggplot2.continuous.fill = "viridis",
ggplot2.discrete.colour = grDevices::palette()[-1],
ggplot2.discrete.fill = grDevices::palette()[-1]
)
Generate a gene genealogy
result = tekka("--seed 42 -y40 -K100 -r2 -l2 --sa 2,2 --sj 2,2")
samples = result$sample_family[[1L]]
set.seed(666L)
genealogy = make_gene_genealogy(samples) |> print()
## $V tibble [362 × 1] (S3: tbl_df/tbl/data.frame)
## $ name: chr [1:362] "145-2" "7-1" "142-2" "7-2" ...
## # A tibble: 336 × 4
## from to birth_year capture_year
## <chr> <chr> <int> <int>
## 1 145-2 7-1 40 40
## 2 142-2 7-2 40 40
## 3 164-2 8-1 40 40
## 4 150-1 8-2 40 40
## 5 140-1 15-1 40 40
## 6 98-2 15-2 40 40
## 7 140-2 16-1 40 40
## 8 181-1 16-2 40 40
## 9 99-1 3-1 39 39
## 10 98-2 3-2 39 39
## # ℹ 326 more rows
Visualize the generated gene genealogy
plot(genealogy) +
theme_void() +
theme(legend.position = "top")
Generate SNPs
Randomly place a fixed number of mutations on a given genealogy without recombination.
snp = place_mutations(genealogy, 3L) |> print()
## [,1] [,2] [,3]
## 7-1 0 0 0
## 7-2 0 0 0
## 8-1 0 0 0
## 8-2 0 0 0
## 15-1 1 0 0
## 15-2 0 0 0
## 16-1 0 0 0
## 16-2 0 0 0
## 3-1 0 0 0
## 3-2 0 0 0
## 4-1 0 0 1
## 4-2 0 0 0
## 11-1 0 0 0
## 11-2 0 1 1
## 12-1 0 0 1
## 12-2 0 0 0
## 5-1 0 0 0
## 5-2 0 0 0
## 6-1 0 0 0
## 6-2 0 0 0
## 1-1 0 0 0
## 1-2 0 0 1
## 2-1 0 0 1
## 2-2 0 0 0
## 13-1 0 0 0
## 13-2 0 0 0
## 14-1 0 0 0
## 14-2 0 0 0
## 9-1 1 0 0
## 9-2 0 0 1
## 10-1 1 0 0
## 10-2 1 0 0
Save SNP patterns as a VCF file:
write_vcf(snp, some_file)
## ##fileformat=VCFv4.5
## #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT 7 8 15 16 3 4 11 12 5 6 1 2 13 14 9 10
## . . . . . . . . GT 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 1|1
## . . . . . . . . GT 0|0 0|0 0|0 0|0 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
## . . . . . . . . GT 0|0 0|0 0|0 0|0 0|0 1|0 0|1 1|0 0|0 0|0 0|1 1|0 0|0 0|0 0|1 0|0
You can also generate a list of SNP matrices for chromosomes with
recombination in parallel. Use RNGkind("L'Ecuyer-CMRG")
and
set.seed()
for reproducibility:
options(mc.cores = 2L) # parallel::detectCores(logical = FALSE)
RNGkind("L'Ecuyer-CMRG")
set.seed(666L)
snp = make_snp(samples, ss = c(chr7 = 4L, chr8 = 3L))
vcf = as_vcf(snp) |> add_pos_id()
write_vcf(vcf, some_file)
## ##fileformat=VCFv4.5
## #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT 7 8 15 16 3 4 11 12 5 6 1 2 13 14 9 10
## chr7 1 chr7-1 . . . . . GT 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
## chr7 2 chr7-2 . . . . . GT 0|0 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0
## chr7 3 chr7-3 . . . . . GT 0|0 0|0 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
## chr7 4 chr7-4 . . . . . GT 1|1 0|1 1|1 1|0 0|1 1|1 1|0 1|0 1|0 1|0 0|1 1|1 1|1 1|0 1|1 1|1
## chr8 1 chr8-1 . . . . . GT 0|0 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 1|1 0|0 0|0 0|0 0|0 1|0 0|0
## chr8 2 chr8-2 . . . . . GT 0|0 0|0 0|0 0|0 0|1 0|0 0|0 1|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0
## chr8 3 chr8-3 . . . . . GT 0|0 0|1 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0 0|0