久保先生の"緑本"こと
「データ解析のための統計モデリング入門」
をベースに回帰分析の概要を紹介。
線形モデル LM (単純な直線あてはめ)
↓ いろんな確率分布を扱いたい
一般化線形モデル GLM
↓ 個体差などの変量効果を扱いたい
一般化線形混合モデル GLMM
↓ もっと自由なモデリングを!
階層ベイズモデル HBM
久保先生の"緑本"こと
「データ解析のための統計モデリング入門」
をベースに回帰分析の概要を紹介。
線形モデル LM (単純な直線あてはめ)
↓ いろんな確率分布を扱いたい
一般化線形モデル GLM
↓ 個体差などの変量効果を扱いたい
一般化線形混合モデル GLMM
↓ もっと自由なモデリングを!
階層ベイズモデル HBM
植物100個体から8個ずつ種子を取って植えたら全体で半分ちょい発芽。
親1個体あたりの生存数はn=8の二項分布になるはずだけど、
極端な値(全部死亡、全部生存)が多かった。個体差?
各個体の生存率$p_i$をそのままパラメータにすると過剰適合。
「パラメータ数 ≥ サンプルサイズ」の“データ読み上げ”モデル。
i.e., この個体は4個生き残って生存率0.5だね。次の個体は2個体だから……
個体の生存能力をもっと少ないパラメータで表現できないか?
各個体の生存率$p_i$が能力値$z_i$のシグモイド関数で決まると仮定。
その能力値は全個体共通の正規分布に従うと仮定:
$z_i \sim \mathcal{N}(\hat z, \sigma)$
パラメータ2つで済む: 平均 $\hat z$, ばらつき $\sigma$ 。
前者は標本平均 $\hat p$ から求まるとして、後者どうする?
普通の二項分布は個体差無し $\sigma = 0$ を仮定してるのと同じ。
正規分布と二項分布の混ぜ合わせ……?
パラメータp(を決めるz)ごとに二項分布を作って、重み付けして足したもの。
sigmoid = function(x, gain = 1) {1 / (1 + exp(-gain * x))}
お客さんたちが注文したビールの杯数X。平均2.74杯。
はいはい、ポアソン分布でしょ……
いや、分散が大きいぞ。
全員が同じ平均注文数$\lambda$を持つという仮定が間違ってたのかも。
🔰 平均注文数がガンマ分布に従うと仮定して、乱数生成してみよう。
成功率pの試行がn回成功するまでの失敗回数X。 n = 1 のとき幾何分布と一致。
\[ \text{Prob}(X = k \mid n,~p) = \binom {n + k - 1} k p^n (1 - p)^k \]
失敗回数ではなく試行回数を変数とする定義もある。
平均$\lambda$がガンマ分布でばらついたポアソン分布、とも解釈できる。
($k \to \infty$でポアソン分布と一致)
固定効果(fixed effects) のみ扱っていたGLMを拡張して、
変量効果(random effect) を混合したモデル。
「混合分布を使うモデル」という意味ではないらしい。
\[\begin{split} y_i &\sim \text{Binomial}(n,~p_i) \\ \text{logit}(p_i) &= \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + z_{1i} + \ldots \\ z_{1i} &\sim \mathcal{N}(\mu_1,~\sigma_1) \end{split}\]
e.g.,
個体$i$の種子生存率$p_i$は、
(固定効果) 体サイズ$x_{1i}$と日当たり$x_{2i}$に依存し、
(変量効果) よくわからん個体差$z_{1i}$と植木鉢差$z_{2i}$もある。
推定したパラメータを予測に使うなら固定効果
データに擬似反復が含まれるとき。
ぜんぶ独立のつもりで解析すると推定が偏ったり誤ったり。
植木鉢 | 個体/植木鉢 | 種子/個体 | 疑似反復 | 推定不可 |
---|---|---|---|---|
100個 | 1個体ずつ | 1個ずつ | – | 個体差・鉢差 |
25個 | 1個体ずつ | 4個ずつ | 個体 | 鉢差 |
20個 | 5個体ずつ | 1個ずつ | 植木鉢 | 個体差 |
5個 | 5個体ずつ | 4個ずつ | 植木鉢・個体 | – |
疑似反復あり
→ 観測できなかった個体差・場所差(変量効果)を推定可能
→ そのぶんを差し引いて固定効果を推定したい
→ ここでGLMMの練習はせず、階層ベイズモデルに進む。