|
double | edal::Individual::preference_overlap (const Individual &other) const |
| Exponent of \(C_y(I, J)\): competition on habitat preference. More...
|
|
double | edal::Individual::morphology_overlap (const Individual &other) const |
| Exponent of \(C_x(I, J)\): competition on morphology. More...
|
|
double | edal::Individual::resource_overlap (const Individual &other) const |
| \(C(I, J) = C_x(I,J) C_y(I,J)\) for competition
|
|
double | edal::Individual::habitat_preference_exp (const double height, const double diameter) const |
| Exponent of \(\Xi(I, u, v)\) in anolis_v2. More...
|
|
double | edal::Individual::habitat_preference_quadratic (const double height, const double diameter) const |
| \(\Xi(I, u, v)\) quadratic approximation in anolis_v3 More...
|
|
double | edal::Individual::calc_DI_analytical () const |
| \(D_I\) analytical computation by Mathematica (fast but limited) More...
|
|
double | edal::Individual::calc_DI_numerical () const |
| \(D_I\) numerical computation (slow) More...
|
|
double | edal::Individual::calc_Dxi_analytical () const |
| Calculate quadratic \(\Xi(I, u, v)\) normalizer with analytical solution. More...
|
|
double | edal::Individual::calc_Dxi_numerical () const |
| Numerical integration of quadratic \(\xi(I, u, v)\). More...
|
|
double edal::Individual::morphology_overlap |
( |
const Individual & |
other | ) |
const |
Exponent of \(C_x(I, J)\): competition on morphology.
- Parameters
-
other | individual to interact |
- Returns
- \(C_x(I, J)\)
- Return values
-
1 | for individuals with identical preferences |
\[ C_x(I,J) = \exp(-\frac{(x_{0,I} - x_{0,J})^2}{2c_x^2} -\frac{(x_{1,I} - x_{1,J})^2}{2c_x^2}) \]
double edal::Individual::preference_overlap |
( |
const Individual & |
other | ) |
const |
Exponent of \(C_y(I, J)\): competition on habitat preference.
- Parameters
-
other | individual to interact |
- Returns
- \(C_y(I, J)\)
- Return values
-
1 | for individuals with identical preferences |
following Roughgarden and others
\[ C_y(I,J) = \exp(-\frac{(y_{0,I} - y_{0,J})^2}{2c_y^2} -\frac{(y_{1,I} - y_{1,J})^2}{2c_y^2}) \]