Evolutionary Diversification in Anolis Lizards
|
Functions | |
double | edal::Individual::effective_carrying_capacity_quad_unnormalized () const |
\(K_e(I)\) with quadratic \(\Xi\) before normalization (v3u) More... | |
double | edal::Individual::effective_carrying_capacity_exp_unnormalized () const |
\(K_e(I)\) with exponential \(\Xi\) | |
double | edal::Individual::effective_carrying_capacity_old_exp_unnormalized () const |
\(K_e(I)\) with old resource distribution and exponential \(\Xi\) before normalization | |
double | edal::Individual::survival_probability (const double effective_num_competitors) const |
Probability of survival \(w(I)\). More... | |
double | edal::Individual::fitness (const double height, const double diameter) const |
Exponent of \(W(x_0, x_1 \mid u, v)\): measure adaptation to habitat. More... | |
void | edal::Patch::viability_selection () |
Some individuals die depending on Individual::survival_probability() | |
std::vector< double > | edal::Patch::effective_num_competitors () const |
Calculate \(N_e(I)\) from \(C(I,J)\). More... | |
double edal::Individual::effective_carrying_capacity_quad_unnormalized | ( | ) | const |
\(K_e(I)\) with quadratic \(\Xi\) before normalization (v3u)
\[ K_e(I) = K_0 \int_0^1 \int_0^{1-u} F(u,v) W(x_0,x_1 \mid u,v) \Xi(y_0,y_1 \mid u,v) dv du \]
|
private |
Calculate \(N_e(I)\) from \(C(I,J)\).
\[ N_e(I) = \sum_J C(I,J) \]
|
private |
Exponent of \(W(x_0, x_1 \mid u, v)\): measure adaptation to habitat.
height | habitat environmant |
diameter | habitat environment |
\[ W(x_0,x_1 \mid u,v) = \exp(-\frac{(x_0 - u)^2}{2s_0^2} -\frac{(x_1 - v)^2}{2s_1^2}) \]
double edal::Individual::survival_probability | ( | const double | effective_num_competitors | ) | const |
Probability of survival \(w(I)\).
effective_num_competitors | \( K_e(I) \) |
1.0 | if \( N_e(I) \ll K_e(I) \) |
1/b | if \( N_e(I) = K_e(I) \) |
The probability that an individual survives to the age of reproduction is
\[ w(I) = \frac 1 {1 + (b-1) \frac {N_e(I)^\alpha} {K_e(I)}} \]
where the parameter \( \alpha \) (= 1 for now) controls the strength of crowding, and \( b > 0 \) (Individual::AVG_NUM_OFFSPINRGS_) is a parameter (average number of offspring per female; see below). This is the Beverton-Holt model which represents a discrete-time analog of the logistic model