Evolutionary Diversification in Anolis Lizards
Functions

Functions

double edal::Individual::mating_probability (const Individual &male) const
 \(P(I,I') = \psi(I,I') C_y(I,I')\) More...
 
double edal::Individual::mating_probability_debarre (const Individual &male) const
 \(P(I,I') = \psi(I,I') C_y(I,I')\) with Debarre 2012 More...
 
double edal::Individual::mating_probability_TPG2013 (const Individual &male) const
 \(P(I,I') = \psi(I,I') C_y(I,I')\) with Thibert-Plante and Gavrilets 2013 More...
 
std::vector< Lociedal::Individual::gametogenesis (URBG &) const
 Gametogenesis with free recombination and mutation. More...
 
std::vector< Individualedal::Patch::mate_and_reproduce () const
 All females mate with someone according to mating probability. More...
 

Detailed Description

Function Documentation

◆ gametogenesis()

std::vector< Individual::Loci > edal::Individual::gametogenesis ( URBG engine) const

Gametogenesis with free recombination and mutation.

Returns
a gamete

◆ mate_and_reproduce()

std::vector< Individual > edal::Patch::mate_and_reproduce ( ) const

All females mate with someone according to mating probability.

Returns
offsprings of all the females in the patch

Each mating results in a number of offspring drawn from a Poisson distribution with parameter b. We assume that all adult females mate. This assumption implies that any costs of mate choice, which can easily prevent divergence and speciation, are absent. This assumption also means that the effective population size is increased relative to the actual number of adults.

◆ mating_probability()

double edal::Individual::mating_probability ( const Individual male) const

\(P(I,I') = \psi(I,I') C_y(I,I')\)

\[ \psi(f,c\mid m) = \left\{ \begin{array}{ll} \exp \left( -(2c-1)^2 \frac{(f-m)^2}{2\sigma_a^2}\right) & \mbox{if}\ c > 0.5,\\ 1 & \mbox{if}\ c=0.5,\\ \exp \left( -(2c-1)^2 \frac{(f-(1-m))^2}{2\sigma_a^2}\right) & \mbox{if}\ c<0.5, \end{array} \right. \]

◆ mating_probability_debarre()

double edal::Individual::mating_probability_debarre ( const Individual male) const

\(P(I,I') = \psi(I,I') C_y(I,I')\) with Debarre 2012

\[ \psi(f,c\mid m) = \left\{ \begin{array}{ll} 1 - (2c-1)^2\Big[1 - \exp\Big(-\frac {(f-m)^2}{2\sigma_a}\Big)\Big] & \mbox{if}\ c > 0.5,\\ 1 & \mbox{if}\ c=0.5,\\ 1 - (2c-1)^2\Big[ \exp\Big(-\frac {(f-m)^2}{2\sigma_a}\Big)\Big] & \mbox{if}\ c<0.5, \end{array} \right. \]

◆ mating_probability_TPG2013()

double edal::Individual::mating_probability_TPG2013 ( const Individual male) const

\(P(I,I') = \psi(I,I') C_y(I,I')\) with Thibert-Plante and Gavrilets 2013

\[ \psi(f,c\mid m) = \left\{ \begin{array}{ll} \exp \left( -(2c-1)^2 \frac{(f-m)^2}{2\sigma_a^2}\right) & \mbox{if}\ c > 0.5,\\ 1 & \mbox{if}\ c=0.5,\\ 2 - \exp \left( -(2c-1)^2 \frac{(f-m)^2}{2\sigma_a^2}\right) & \mbox{if}\ c<0.5, \end{array} \right. \]