Evolutionary Diversification in Anolis Lizards
|
Functions | |
double | edal::Individual::mating_probability (const Individual &male) const |
\(P(I,I') = \psi(I,I') C_y(I,I')\) More... | |
double | edal::Individual::mating_probability_debarre (const Individual &male) const |
\(P(I,I') = \psi(I,I') C_y(I,I')\) with Debarre 2012 More... | |
double | edal::Individual::mating_probability_TPG2013 (const Individual &male) const |
\(P(I,I') = \psi(I,I') C_y(I,I')\) with Thibert-Plante and Gavrilets 2013 More... | |
std::vector< Loci > | edal::Individual::gametogenesis (URBG &) const |
Gametogenesis with free recombination and mutation. More... | |
std::vector< Individual > | edal::Patch::mate_and_reproduce () const |
All females mate with someone according to mating probability. More... | |
std::vector< Individual::Loci > edal::Individual::gametogenesis | ( | URBG & | engine | ) | const |
Gametogenesis with free recombination and mutation.
std::vector< Individual > edal::Patch::mate_and_reproduce | ( | ) | const |
All females mate with someone according to mating probability.
Each mating results in a number of offspring drawn from a Poisson distribution with parameter b. We assume that all adult females mate. This assumption implies that any costs of mate choice, which can easily prevent divergence and speciation, are absent. This assumption also means that the effective population size is increased relative to the actual number of adults.
double edal::Individual::mating_probability | ( | const Individual & | male | ) | const |
\(P(I,I') = \psi(I,I') C_y(I,I')\)
\[ \psi(f,c\mid m) = \left\{ \begin{array}{ll} \exp \left( -(2c-1)^2 \frac{(f-m)^2}{2\sigma_a^2}\right) & \mbox{if}\ c > 0.5,\\ 1 & \mbox{if}\ c=0.5,\\ \exp \left( -(2c-1)^2 \frac{(f-(1-m))^2}{2\sigma_a^2}\right) & \mbox{if}\ c<0.5, \end{array} \right. \]
double edal::Individual::mating_probability_debarre | ( | const Individual & | male | ) | const |
\(P(I,I') = \psi(I,I') C_y(I,I')\) with Debarre 2012
\[ \psi(f,c\mid m) = \left\{ \begin{array}{ll} 1 - (2c-1)^2\Big[1 - \exp\Big(-\frac {(f-m)^2}{2\sigma_a}\Big)\Big] & \mbox{if}\ c > 0.5,\\ 1 & \mbox{if}\ c=0.5,\\ 1 - (2c-1)^2\Big[ \exp\Big(-\frac {(f-m)^2}{2\sigma_a}\Big)\Big] & \mbox{if}\ c<0.5, \end{array} \right. \]
double edal::Individual::mating_probability_TPG2013 | ( | const Individual & | male | ) | const |
\(P(I,I') = \psi(I,I') C_y(I,I')\) with Thibert-Plante and Gavrilets 2013
\[ \psi(f,c\mid m) = \left\{ \begin{array}{ll} \exp \left( -(2c-1)^2 \frac{(f-m)^2}{2\sigma_a^2}\right) & \mbox{if}\ c > 0.5,\\ 1 & \mbox{if}\ c=0.5,\\ 2 - \exp \left( -(2c-1)^2 \frac{(f-m)^2}{2\sigma_a^2}\right) & \mbox{if}\ c<0.5, \end{array} \right. \]