LCF notation (named after Lederberg, Coxeter, and Frucht) is a concise notation for 3-regular Hamiltonian graphs.
graph_circulant(n, shifts) is roughly equivalent to graph_lcf(n, c(1L, shifts), n).
Arguments
- n
An integer value, the number of vertices.
- shifts
An integer vector giving the shifts. For
graph_lcf(), it gives additional edges to a cycle backbone, while forgraph_circulant(), it gives all the edges.- repeats
The number of repeats for the shifts.
- directed
A logical value, whether to consider directed paths. Ignored for undirected graphs.
Value
An igraph_ptr object.
See also
Other deterministic generators:
graph_create(),
graph_empty(),
graph_famous(),
graph_full(),
graph_hypercube(),
graph_kary_tree(),
graph_square_lattice(),
graph_star()
Examples
graph_lcf(5L, 2L, 5L)
#> $V tibble [5 × 0] (S3: tbl_df/tbl/data.frame)
#> Named list()
#> # A tibble: 10 × 2
#> from to
#> <int> <int>
#> 1 2 1
#> 2 3 1
#> 3 4 1
#> 4 5 1
#> 5 3 2
#> 6 4 2
#> 7 5 2
#> 8 4 3
#> 9 5 3
#> 10 5 4
graph_circulant(5L, 2L, directed = TRUE)
#> $V tibble [5 × 0] (S3: tbl_df/tbl/data.frame)
#> Named list()
#> # A tibble: 5 × 2
#> from to
#> <int> <int>
#> 1 1 3
#> 2 2 4
#> 3 3 5
#> 4 4 1
#> 5 5 2